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Fourier-like transforms over GF(F,), where F, = 2" + 1 is a Fermat prime,
have found application in decoding Reed-Solomon codes. It is shown here that
such transforms can be computed using high-radix fast Fourier transform (FFT)
algorithms requiring considerably fewer multiplications than the more usual radix
2 FFT algorithm. A special 256-symbol, 16-symbol-error-correcting, Reed-
Solomon (RS) code for space communication-link applications can be encoded
and decoded using this high-radix FFT algorithm over GF(F,).

l. Introduction

Recently, Justesen (Ref. 1) and Reed, Truong, and
Welch (Refs. 2, 3) proposed that transforms over GF(F,)
(Refs. 4, 5) can be used to define Reed-Solomon (RS)
codes (Ref. 6) and to improve the decoding efficiency of
these codes. The transform over GF(F,) is of the form

-1

Alf) =2 alt) ¥*

t=0

for0<f<d—1 (1

where F, =2+ 1 is a Fermat prime for n <4. In
(1) the transform length d divides F, — 1, a(t) e GF(F,),
and y is a primitive dth root of unity which generates
the d element cyclic subgroup
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Gy = {y,yz, ...’yd-l,l}

in the multiplicative group of GF(F,). The inverse trans-
form of (1) is

a(t) = (d)* 5, Af) 7"

f=0

foro<t<d—1 (2

where (d) denotes the residue of d modulo F, and (d)™
is the inverse of (d) in GF(F,).

To transform longer integer sequences over GF(F.,),
from Ref. 5, one can use the fact that y = 3 is a primi-
tive element in GF(F,). Such a y gives a maximum trans-
form length of 22",
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In space communication links, it was shown in Ref. 7
that in the concatenated E = 16-error-correcting, 255-
symbol RS code, each symbol with 8 bits and a K=7,
rate = % or %, Viterbi decoded convolutional code, can
be used to reduce the value of E;/N, required to meet a
specified bit-error rate P, where E; is the received
energy for each bit, and N, is the noise power spectral
density at the receiver input.

Figure 1 presents a curve of concatenated code bit
probability of the error bound vs E,/N, for a K=717,
R =%, convolutional code with 8 bits per RS symbol.

Since 3 is an element of order 2** in GF(F,) (Ref. 5),
an RS code of as many as 2% symbols of 9 bits each can
be generated in GF(F,). Hence, by Ref. 2, the Fermat
theoretic transform over GF(F,) can be used to decode
an RS code of 2% symbols. For a given 223 information
symbols, each of 8 bits, as mentioned above by Ref. 2,
224 information symbols in GF(F,),i.e., S; =0, S,, **+, S,
can be represented in the range from 0 to 22 — 1. After
encoding the information symbols, the parity check sym-
bols in the 256-symbol RS code may occur in the range
between 0 and 2*. If 2% is observed as a parity check
symbol, deliberately change this value to 0, now an error.
The transform decoder will correct this error automa-
tically. Hence, the RS code generated in GF(F,) can be
used to concatenate with a K = 7, rate % or % convolu-
tional code.

The arithmetic used to perform these transforms over
GF(F,) requires integer multiplications by powers of 3
and integer additions modulo F,. However, integer mul-
tiplications by powers of 3 modulo F, are not as simple
as multiplications by powers of /2 modulo F,, which
can be implemented by circular shifts (Ref. 5). To
remedy such a problem, it is shown here that high-radix
fast Fourier transform (FFT) algorithms can be used to
reduce the number of multiplications required for trans-
forming integer sequences in GF(F,).

Il. High-Radix FFT Algorithms Over GF(F,),
Where F, Is a Fermat Prime

In order to develop high-radix FFT algorithms over
GF(F,), it is desirable, as we shall see, that multiplica-
tions involving the 2'th roots of unity in GF(F,) be
simple operations. This is made possible from the
fact that the 2ith roots of unity over GF(F,), where
2 <i<n+1 are plus or minus power of 2 mod F,.
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To see this, note that if 2|s, then

(2%/2)2=2*  modF,
and

[£2em+9)/2]2 = 92" 95 — 23 mod F,,

Hence, by theorem 2.20 of Ref. 8, the congruences
¥*=2* modF, (3)
and
¥*’=—2°* modF, (4)
have exactly two solutions given by
X=+2%7? mod F,, (5)
and

X == - Q(2"8) /2

mod F,, (6)

respectively. Now let y be a primitive dth root of unity
in GF(F,), where d =2 with 1<t <2* Then by
theorem 1 of Ref. 9,

Y2 = ()= —1 mod F,
Also by (6),
Y/t = (y28)2 = 492 mod F,
Combining (5) and (6), one obtains
YO8 = (y216)2 == - Q22 mod F,,

where k =1, 3. By repeatedly applying (5) and (6) in
this manner, one has finally

yd/zi = i2}9211441

mod F, (7)
where 2<i<n-+1and k=1,3,5,---,2i- — 1.

The high-radix FFT algorithms over GF(F,) are
similar to those over the field of complex numbers
(Refs. 10, 11). The following example illustrates the
radix 16, decimation-in-frequency, twiddle-factor FFT
over GF(F,).

Example: Let F, =2+ 1 =957, d =162 = 256. The

radix 16, decimation-in-frequency, twiddle factor, FFT
algorithm over GF(F;) is described as follows.
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Let f and ¢ in (1) be expressed as
f=f16+f (8)
t=t-+16+¢, (9)
where
fi,t: =0,1,2,8,---,15
Substituting (8) and (9) into (1), one has

= i i d(tl +16 + to)'}’(fl- 16+fo) (f1- 16+%0)

to=0 t3=0

(10)

Since y¢ = y'¢*=1 mod F;, (10) becomes

15 15

- Z alt 16 =+ t fxto- 16+fot1- 16+foto

to=0 t1=0

15 15

to=0 t1=0
Let

By(fo+16 + t,) = [Za £1216 -+ to)y fm-m]yfoto
t=0

Bulfo" 16 +,) = 3" Bu(fo+ 16 + 1)+ y40

to=0

The radix 16, 256-point, FFT algorithm over GF(F;)
is then composed of the following stages:

Stage 1:

15

Bi(fo-16 + t,) = [Za

i1=0

.16 + t0> _yfotl- 16] .onto
(11)

Stage 2:

By(fo*16 + f,) = [i Bi(fo* 16 + £,)y/tte 18] (12)

to=0

From (7),

ylG = 'yd/16 == 40 mod F,

where k =1, 3, 5, 7. It is shown in Ref. 9 that if vy is a
primitive element in GF(q), where g is a prime,
then y” is also a primitive element in GF(q), where
m=235,---,g — 2. It is well known (Ref. 5) that 3 is
a primitive element in GF(F,). Thus 3™ is also a primitive
element in GF(F,) for m = 3,5, ---2*" — 1.
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Now the choice of y = 3% gives

,Y16 — (83)16 = (316)3 — ( 23)35 mod F3
since 31 == —2? (mod F;) and 2°= —2 (mod F,). Hence,
¥ 16 in (11) can take on only the values =1 or a power

0f2

Since multiplications by =1 involve only sign change
and since multiplications involving powers of 2 mod F,
can be achieved by circular shifts, the 16-point discrete
Fourier transform in the brackets of (11) can be evaluated
without multiplications. These results are then referenced
by multiplying by the so-called twiddle factor +feb.
Using a similar argument, (12) can also be evaluated
without multiplications.

The number of operations required to perform a FFT
of 256 points using the radix 2, the radix 4, and the radix
16 FFT algorithms over GF(F,) is shown in Table 1.
From this table, one can see that the radix 4 and the
radix 16 FFT algorithms require 30% and 70% fewer
multiplications, respectively, than the more usual radix 2
FFT algorithm.

In the above example, it was shown that one can find
a power of 3 for y such that

Y2 =9 mod F,,
For this y, one has
Y= D mod F,,
From Ref. 5,
V2=22(2"" —1) modF,

Hence multiplications involving integral powers of y%/*"*
can be accomplished either by circular shifts or a circular
shift followed by a subtraction, depending on whether
an even or an odd power of 1/2 is involved. As a conse-
quence, a high radix FFT up to 2" also could be devel-
oped. For example, the 256-point FFT over GF(F;) could
be computed using a mixed radix FFT of radix 32 and
radix 8,

In light of the above discussion, when transforming
long integer sequences in GF(F,), it is desirable to per-
form as many high-radix FFT iterations as possible to
reduce the required multiplications.
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Table 1. Number of operations required to transform
d = 256 points FFT over GF(F,), where n = 3, 4.

leorith Mod F,, Mod F, Circular
Algorithm multiplications additions shifts
Radix 2 769 2048 0
(d = 28)

Radix 4 513 2048 256
[d = (22)¢]

Radix 16 225 2048 544

[d = (247
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Fig. 1. Concatenated coding performance witha K = 7,
R = 14 inner code and 8 bits/RS symbol
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